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The application of automated design optimization to real-erld, complex geometry problems
is a significant challenge — especially if the topology isohknown a priori like in turbine
internal cooling. The long term goal of our work is to cus on an end-to-end integration of
the whole CFD Process, from solid model through mesi, solving and post-processing to
enable this type of design optimization to become viabl& practical. In recent papers we
have reported the integration of a Level Set based geeitny kernel with an octree-based cut-
Cartesian mesh generator, RANS flow solver, post-proceing & geometry editing all within
a single piece of software — and all implemented in parell with commodity PC clusters as
the target. The cut-cells which characterize the apmach are eliminated by exporting a
body-conformal mesh guided by the underpinning Level SeThis paper extends this work
still further with a simple scoping study showing how he basic functionality can be scripted
& automated and then used as the basis for automated optimizah of a generic gas turbine
cooling geometry.

l. Introduction

As confidence in flow simulations increases, so dpgdieation to ever more challenging cases. Curreniages

in the world of turbomachinery include many examples afiex flows in complex geometries — like secondary
air systems and turbine internal & external cooling. v@otional simulation tools, CAD systems, mesh gedoesa
flow solvers & post-processors perform well individualiyt less so when attempts are made to script them togethe
in an automatable system — especially when problens sizeome large and the geometry is very (or even
arbitrarily) complex. The research reported in this pages motivated by asking the questions: what would it take
for theentire CFD Process from CAD-to-mesh-to-solver-to-post-pssiey to be inherently parallel, scalable and
without any serial bottlenecks? What would it take li@r geometry to be editable — without topological restnét
What would it take for this to be scriptable & autonbé@

In a series of papers we have tried to chart a wayafatwDawes [2005] proposed a methodology that was
deliberately different from the current, orthodox procelsain which scripts together best-in-class tools CA
import, mesh generation, solver, etc...). The essendg@shéw approach was the integration of a geometryeker
based on a Level Set approach with an octree-based esi@a mesh generator, RANS flow solver and post-
processing all within a single piece of software. Bbhasic building-block work was reported by Dawes [2005] and
the parallelization of the entire system was repariddawes [2006]. Replacing the cut-cells with layers of body
conformal meshes was described in Dawes et al [2007].ultireate goal of this research is to allow rapid
prototyping design optimization to take place automaticailyeal geometries of arbitrary size & complexity
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This paper reports recent progress towards these goalexsing the core functionality of our software to
external agents via appropriate interfaces and scriptnghow that it is possible to build a fully automated-tm

end process capable of managing, editing, meshing andstitwing very complex geometries. We illustrate this
with a scoping study of the optimization — with topolodpacge - of a simple surrogate for a gas turbine internal
cooling geometry — a generic cut-back trailing edge..

Il. Algorithmic architecture of BOXER

The BOXER software represents an attempt to integhatevhole CFD Process “end-to-end” from CAD import
through mesh generation flow solution & post-processingludting the ability to edit the geometry. BOXER has
been implemented, at least to prototype standard, aceade in parallel — including all data flows between
functional units. BOXER was inspired by exploration of gussibilities offered by the integration of the solid
modeling directly with the mesh generation & with th@amlsolution — this inspiration combined ideas from solid
modeling (see for example Samareh [1999,2001] & Haimes [@088]) with virtual sculpting (see for example,
Galyean et al [1991], Perng et al [2001] and Baeretzen [200dipined in the context of a simple, cut-Cartesian
mesh flow solver ( see Bussoletti et al [1985] or Aftasetial [1998]). In a series of publications: (Dawes [2005])
first set out these building blocks and showed their patieasi a rapid prototyping design tool; then Dawes [2006]
showed how these building blocks could be efficiently imigleted in parallel; then Dawes et al [2007] showed
how layer meshes or body-conformal meshes could betexpim overcome the cut-cell issue.

The backbone of BOXER is a very efficient octree datacture actingsimultaneoudy as a search engine, as a
spatial occupancy solid model and as an adaptive, unstrdichesh for the flow solver. This provides unlimited
geometric flexibility and very robust mesh generatiore $hlid model is initialised by the import of a tessetlat
surface from a variety of potential sources (most CADires have an STL export) or by direct interrogatiomef t
CAD solid model kernel itself. The solid model is captiuoa the adaptive, unstructured Cartesian hexahedral mesh
very efficiently by cutting the tesselated boundaries u&iagic computer graphics constructs developed for
interactive 3D gaming (aimed at real-time collision d&éeg. This geometry capture is very fast; for examgple,
body represented by about 1M surface triangles can be edgotb a mesh of around 11M cells (with 6-7 levels of
refinement) in approximately 2 minutes on a single, top-€C — very much faster in parallel. The spatial
occupancy solid model is sampled as a distance field andged as a Level Set; this forms a solid modeling kernel
to support the activities of the code. Adaptive mesmegédie-refine for the flow and for the geometry, via the
distance field, enables both moving bodies and topatd@ing —flow sculpting.
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Figure 1 Algorithmic architecture of BOXER
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The algorithmic architecture is illustrated in Figurd'thie associated 3D RANS solver was adapted from an existing
unstructured mesh RANS solver (Dawes et al [2001]) wighaitiditional complications of handling hanging nodes
and the cut cells.

. Conformal mesh export to drive third-party solvers

The cut cells are the big disadvantage of the Cartepjamoach - Dawes et al [2007] described how viscous layers
or body-conformal meshes may be generated using the undarpirevel Set distance field geometry kernel as a
guide. The conformal mesh export (together with simpheokel of the hanging nodes by inserting appropriate
pyramids, tets etc.) allows third party flow solvers, IREJENT®, to be used. Figure 2 illustrates such a sinanati
for a generic pin fin field within a gas turbine blade.

Key to the success of this approach (as described irePatval [2007]) is the use of optimization algorithms to
control the quality of the exported volume mesh. This dpéition manages volume mesh quality using metrics like

Figure 2 (a) Conformal mesh export from BOXER  Figure 2(b)Conformal mesh export from BOXER for
for a generic gas turbine blade - mesh a generic gas turbine blade — FLUENT® simulation
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skew, warpage, etc. — in fact whatever metrics the-fharty solver is sensitive to — and the volume meshes
“managed” into an acceptable range so the exported meglarianteed of solvable quality. This is absolutely
crucial for the success — indeed for the very viabiityf an automated process aimed at real, complex geosnetrie
likely to undergo topological change during optimization. Theeroff for the guaranteed solvable volume mesh is
that sometimes surface mesh smoothness is comprorypedlly most of the surface is mirror-like but difficult
areas distort - but by no more than a fraction ofiineamental smallest mesh scale (so whether a smvesee the
distortion is a moot point). Much more work is stilleded — and planned — in this area — especially to automate
feature recognition and preservation.

IV.  Automatable, scriptable functionality

The simulation described in Section Il — and illustrateéigure 2 represents a one-shoalyss. Design consists

in performing that analysiepeatedly, guided by appropriate metrics — atféinging the geometry. The absolutely
critical bottleneck here is changing the geometry afdiitding a good quality mesh; this challenge is increased
hugely for cases like turbine internal cooling sirtee topology is a priori unknown. An additional challengthéat

this geometry editing & re-meshing activity must beom#table — and hence guaranteed.

We have addressed these challenges by adding a scriptingitamaBOXER, implemented via the Luo language,
to allow the core functionality to be driven by an exé agent. As an illustration we have used the iISIGHT™
system to produce a generic optimization system as simoligure 3. Figure 3(a) shows the generic blade imported
via STL and then represented as a Level Set (cengre ted” is flow; “blue” is metal and “green” is the zepvél

— the blade surface); the cylindrical pin fin depositioals, “blue”, are parameterized via a tool configurafile.
Figure 3(b) shows the geometry editing and mesh regenenatibm BOXER managed by iSIGHT™ - the
illustration is a snapshot of two cases from a Desigaxperiment activity. Other geometry editing tools cdoéd
used — and these tools can be themselves arbitrafifyedeand imported — the aim here is to illustrate thergl

of our approach.

V.  Topology-free optimization: a simple scoping study

Once the whole process is automated as described in ¢h®ys Section then the optimisation of complex
geometries without fixed topology can be contemplate@. diljective of this paper is to report a simple scoping
study. A simple geometry was created to display proof-otgon a small spanwise section of a generic cut-back
cooled turbine trailing edge. The geometry, BOXER octreshineonformal export and a typical FLUENT® flow
solution are illustrated in Figure 4.

To scope an automatic optimization iSIGHTscripted BOXER, as described in the previous Sectmpgetform

via a standard Design of Experiment (DOE) methodologgries of geometry edits, mesh generations, conformal
mesh exports and FLUENT® solves. As a surrogate for faluggure of merit the area-averaged temperature on
the blade suction side of the internal passage wagatéelgand extracted by the script. Figure 5 shows six &4he
cases performed illustrated with the static temperatistilditions on the suction side of the passage. Each
geometry is different — sometimes quite significantly-saith the internal pins able to move where asked, iserea
or reduce their diameter (even down to zero — ie. restgmt). Regenerating the Level set solid model, regémgera
the mesh and exporting it in conformal form ready forflin solution takes less than a minute for each case. Five
of the 24 cases would not solve — generally because tkédulpassage itself was totally blocked by excessive pin
sizes.

The boundary conditions for the flow solve were heldstamt for each case: fixed total-to-static pressuresréor

the primary and secondary paths; fixed total temperatiie between the inflow to the primary and secondary
paths. Figure 6 shows the variation of the surroggted of merit with case number. The variability isisingly
large but reflects the large difference the geometritattan can make to the uniformity of the coolant flow
distribution & delivery within the passage. We stress thia should not be understood as developing an optimum
design but as a demonstration that the speed, robustreedtexability of the BOXER approach is capable of
enabling automated design optimization for real, complex gem@se
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Figure 3(a) The blade is imported via STL and representtas  Figure 3(b) The geometry editing and mesh
a Level Set (centre top —red” is flow; “ blue” is metal and regeneration within BOXER is managed by
! I"is the zero level — the blade surface); the cylindcial iISIGHT™ and the illustration is a snapshot
pin fin deposition tools, “blue”, are parameterized via a tool of two cases from a Design of Experiment
configuration file. activity.
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Figure 4 A simple, generic cut-back trailing edge geony (top left) with corresponding conformal export
(bottom left) and predicted Mach numbers using the FLENT® solver (right column).

VI. Concluding Remarks

This paper has described recent extensions to the BOXEliga. In particular, it is shown that by adding a
scripting capability to the core functionality it is gide to automate the modeling & meshing of complex
geometries without fixed topology as the basis for desgjimization — driven here by iSIGHT™.

As a scoping study the new approach was applied to a genéiack trailing edge geometry in a classic DOE
manner with a simple surrogate figure of merit. Wesstttbat this study should not be understood as developing an
optimum design but as a demonstration that the speedimebssnd flexibility of the BOXER approach is indeed
capable of enabling automated design optimization fy cemplex geometries.

Currently application of the approach described in this papanderway on a much more realistic case of a cooled
turbine rotor with a trenched tip./winglet configuration.
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