

-1-

Enhancing the Productivity and Quality of the CFD Process in
Turbomachinery Design

Carlos Felipe Favaretto and Bill Dawes

Cambridge Flow Solutions

Compass House, Vision Park, Histon, Cambridge, CB24 9AD, UK
Phone: +44-1223-257979, FAX: +44-1223-257800, E-mail: felipe.favaretto@cambridgeflowsolutions.com

 IGTC2007-ABS-13

Copyright © 2007 by GTSJ
Manuscript Received on April 30, 2007

ABSTRACT
 This paper describes the development of two computational
tools aimed at tackling difficulties encountered by engineers when
conducting CFD analysis during the design phase of modern gas
turbines. The first tool is focused on minimizing the computational
time and labour required to modify an existing mesh. Traditionally,
modifying a mesh requires editing its respective geometry at CAD
level, exporting it to the mesh generator, and regenerating the
whole mesh from scratch. The authors propose instead a mesh
morphing tool which manipulates the nodes directly without the
necessity of revisiting the CAD system nor the mesh generator and
uses robust optimization techniques to control the quality of the
outgoing mesh. The second tool is a Level Set based geometry
kernel integrated with an octree-based cut-Cartesian mesh
generator, RANS solver and post-processor. This novel approach
provides rapid and fully automated mesh generation for complex
geometries and also allows arbitrary topology edits to the geometry
in the spirit of real time computer game. The tool was successfully
integrated within the framework of a widely used design
optimization system. Turbomachinery applications using the
proposed computational tools are presented.

INTRODUCTION
 So far, the development in the CFD industry has been focused
mainly on improving the accuracy of the solver as well as
minimizing computational costs by implementing parallel
processing libraries. The low cost and processing power of PC
clusters have enabled designers to analyze large number of
configurations overnight, providing a rich database of candidate
geometries to be chosen from. As a consequence, the bottlenecks in
the CFD process have been shifted towards the pre-processing and
results visualization steps. Cutting-edge technology in
turbomachinery design assisted by CFD requires the ability to
generate large computational grids based on detailed CAD models
with the least possible user interaction and in a short period of time.
The design system must also be flexible enough to allow the
designer to freely modify the geometry and rapidly regenerate a
high quality mesh. The CAD to mesh process in conventional CFD
is simply not robust enough to permit meaningful automation of
design space exploration. In addition to that, the CAD to mesh
process is done in serial, different software is used for each of the
tasks in the process (requiring different licenses, different file
formats, different training for engineers) and coupling between
CFD and FEA models is not straightforward.

 With all these challenging issues in mind, the authors would like
to describe the development of two powerful computational tools.
The first tool morphs an existing mesh and it is focused on
controlling the quality of the output mesh. The second tool, on the
other hand, permits arbitrary topology geometrical changes and its
approach is completely different from traditional CFD. In both
cases the objective is to bypass the CAD-mesh bottleneck and
permit meaningful automation.

MESH MORPHING TOOL
 The working principle of the mesh morphing tool is summarized
in Fig.1. The software reads in a mesh file from an external CFD
code, morphs it and exports a high quality mesh without the
necessity of revisiting the original mesh generator. This
methodology allows designers to save substantial amount of time
for cases where local and moderate changes in the mesh are to be
systematically applied.

1) Read and store hex/prism cell data

3) Store quality of original mesh

4) Define FFD control points

5) Select relevant surfaces

2) Viscous layers

6) Create additional viscous
layers (1,2,3)

7) Calculate parametric location of
surface nodes in the FFD box

* Move FFD box control points

* Eliminate negative volume cells

* Optimize cell quality

* Update surface/viscous layer node
location and spring out the other nodes

8) Mesh Morphing

2.1 - Create, End

2.2 - Read, Continue

Mesh fi le from external CFD code (FLUENT)

Mesh fi le for external CFD code (FLUENT)

Fig.1 - Working principle of the mesh morphing tool.

 The software starts by reading the basic hexahedral/prismatic
cell data and generating the cell faces. On the first run of the
software the viscous layer flagging mechanism is executed (Fig.2).
This process consists of automatically associating nodes in the
refined parts of the grid near the wall boundaries (viscous layer)
with a root surface node. The basic principle of viscous layer
flagging for a surface node with adjacent hexahedral or prism cells
is to find the node from these neighboring cells that shares the
maximum number of common hexahedral/prism cells with this

-2-

particular surface. Since the orientation of the nodes in the cell is
known it is possible to easily find one out of three neighboring
nodes that matches the criterion. In Fig.2 the reference (root)
surface node 4 points to two surface nodes (1 and 3) and one
internal node (8). Therefore, node 8 belongs to level 2 whereas
nodes 1, 3 and 4 belong to the root level or level 1. The process is
repeated until all levels (defined by the user) have been flagged.
This methodology is implemented in a very straightforward manner
allowing layers with mixed cell types (hexahedrons and prisms) to
be flagged by the same routine. There are cases, however, in which
additional layers need to be created in the regions between existing
layers and one single surface node might be the root node for an
array of nlayer(surface 1) x nlayer(surface 2) x nlayer(surface 3)
nodes. Additional routines have been coded to cover these special
cases. Once the flagging process is complete the data is stored in a
pointer file. This process is only necessary to be done once and for
such reason the program is ended in the first run.

3

4

2

1

8

7

6

5

Le
ve
l
1

Le
ve
l
2

3

4

2

1

8

7

6

5

Le
ve
l
1

Le
ve
l
2

5

2

4

6

1

3

Le
ve
l
1

Le
ve
l
2

5

2

4

6

1

3

5

2

4

6

1

3

Le
ve
l
1

Le
ve
l
2

Prism cell

Hexahedral cell

Fig.2 - Viscous layer flagging mechanism.

 On the second run of the software the viscous layer data is read
(step 2.2) and the mesh quality of the original mesh is stored. A
Free-Form Deformation (FFD) box is created around the region to
be morphed based on the input data provided by the user (box
resolution, vectors defining the edges of the box, biasing factors
controlling the distance between each control point). The
parametric location of the surface nodes in the FFD box is
calculated by using an inverse spline approach (step 7). The control
points of the FFD box are translated based on the displacement
matrix specified by the user in the input file. The displacement of
the surface nodes and viscous layer tree nodes, if any, is then
updated. The coordinates of all remaining nodes are repositioned
by using a spring model analogy (Battina, 1990), producing a
smooth mesh between the morphed and unchanged parts of the grid.
A quality control algorithm searches the domain for poorly shaped
cells and fixes them according to a predefined criterion. This is a
fundamental step for the success of the whole CFD process since
the accuracy of the solution is directly related to cell quality. Step 8
can be part of a loop if a stack of morphed meshes is desired. This
whole process has been linked to a commercial CFD solver
(Fluent) and a high level scripting interface for process integration
and optimization (iSIGHT-FD). The description of this process
integration will be published in the near future.

Mesh quality control
 One of the most important routines of the mesh morphing tool is
the one controlling the quality of the outgoing mesh. Although the
spring model usually produces a smooth mesh there are challenging
cases in which cells with negative volume, high skewness or
excessively warped faces are unavoidably created. For such cells a
tabu based mesh optimization algorithm is used.

Fig.3 - Subdivision of incoming cells into tetrahedral cells.

 The objective of the first run of the mesh quality optimizer is to
search and eliminate negative volume cells. The incoming cell is
first subdivided into tetrahedral cells using similar approach to the
one described by Dompierre et al (1999), shown in Fig.3. The
smallest volume among all the permutations of tetrahedral cells is
the value stored as the volume of the original cell. The nodes
belonging to each negative cell are then flagged. The optimizer
moves the node along each of the edges connected to such node and
the best case is stored. The process is repeated until the objective is
achieved.
 The second part of the optimization is to improve the mesh
quality parameter RPI defined by the following equation:

()3
2

�
=

A

V
RPI

 (1)

where V is the volume of a tetrahedral cell and A its respective area.
For every original cell the RPI is defined as the lowest RPI among
all possible permutation of tetrahedral cells. The optimization of
RPI itself would not be of much use in regions where good quality
cells with large aspect ratio are expected. For such reason the
quality control marker ∆RPI was adopted instead:

morphed

originalmorphed

RPI

RPIRPI
RPI

−
=∆

 (2)

 ∆∆∆∆RPI’

Warpage’
1.0

1.0
Feasible

f’w

f’R

F’

Infeasible

Optimum

Fig.4 - Warped face
of a hexahedral cell

 Fig.5 - Objective space for
optimization of hexahedral/prismatic

cell quality

 In some cases using ∆RPI as the sole figure of merit may cause
the optimizer to find acceptable quality tetrahedrons inside a poor
quality hexahedron/prism (Fig.4). This is because there is no
constraint in terms of the flatness of the faces of the
hexahedral/prism cell. For such reason, the face warpage metric
was introduced. The cross-product of each pair of edges of a
quadratic face is calculated, resulting in a normal for each of the
four nodes. Warpage is defined as the worst case angle deviation
among the normals. The nodal value of ∆RPI (fR) is normalized by
the highest value among all relevant nodes whereas the nodal value
for warpage (fW) is normalized by the fixed value of 0.5. The figure
of merit for the optimization is defined as:

22
RW ffF ′+′=′ (3)

where F' is the objective function, f'W the warpage and f'R the ∆RPI,
all in the normalized objective space (Fig.5). The optimization
terminates when the objective criterion for ∆RPI (2.0) is reached. If
the convergence criterion is not satisfied the upper limit for ∆RPI is
redefined as the highest value from the previous run and the
optimization is restarted.
 In order to test the mesh quality control routine, a hexahedral
structured mesh around a turbine blade was morphed. The top part
of Fig.6a shows the morphed mesh before running the quality
control routine. Note the trapezoidal shape of one of the low quality
cells (red circle). In total, 203 nodes were flagged for quality
improvement. The center plots in Fig.6 show the ∆RPI distribution

-3-

on a crystal cut of the mesh (hexahedral cells subdivided into
tetrahedral cells). The red color indicates low mesh quality (high
∆RPI) whereas blue indicates high quality (low ∆RPI). It is also
important to note that the color representation is node based. The
value of a scalar for a particular node is actually the lowest value
among all neighboring cells. After running 10 optimization steps
the number of selected nodes for quality improvement was reduced
to 16 and the largest ∆RPI was reduced from 34801.0 to 2.26,
which is already an acceptable value (center right plot of Fig.6b). In
the top part of Fig.6b it is shown how the nodes belonging to low
quality cells were moved around, slightly reducing the quality of
some cells (by introducing a small amount of warpage) but
improving the overall quality. In the bottom part of Fig.6 contours
of y-velocity gradient in the y-direction calculated from Fluent
results are shown. The impact of mesh quality on the solution can
be qualitatively observed. The red core observed in the early stages
of the mesh quality optimization is gradually smoothed out.

a) Before quality control b) After 10 steps

Fig.6 - Example of quality control routine acting on poorly shaped
cells (top: hexahedral mesh; center: ∆RPI; bottom: y-velocity

gradient in the y-direction).

Test case: leading edge filleting
 Leading edge modification of inlet guide vanes is a technique
that has been used by turbine designers to reduce secondary flows
and minimize the associated aerodynamic losses (Becz et al., 2003)
as well as to reduce adiabatic wall temperatures (Lethander et al.,
2003). Finding the optimum shape of the junction between leading
edge and endwall is a challenging task and is usually done by
experience or with the help of an optimizer. The objective of this
test case is to demonstrate the potentiality of the mesh morphing
tool for integration within a fully automated design optimization

system.
 The control points of the FFD box near the leading edge were
gradually displaced along the spanwise direction to generate a
smooth convex surface, as shown in Figs.7 and 8. The main
complication with respect to mesh quality was handled by a viscous
layer blending approach.

Fig.7 - FFD box for original and morphed meshes.

Fig.8 - Limiting streamlines and crystal cut of original and morphed
meshes.

 In the bottom part of Fig.8 limiting streamlines are shown for the
original and morphed meshes. The solution was obtained by
running Fluent 6.2 with k-ω SST model and second order scheme
for all variables. It is clearly observed that the location of the saddle
point was shifted towards the leading edge due to the convex shape
of the fillet. The endwall separation line was moved towards the
leading edge of the blade, indicating that the penetration of the inlet
boundary layer for the filleted case is smaller than the original one.
As a consequence, the formation of the new boundary layer beneath
the passage vortex occurs at an earlier stage for the filleted leading
edge configuration.

AN INTEGRATED, PARALLEL, GEOMETRY
ENGINE, MESH GENERATOR, FLOW SOLVER AND
POST- PROCESSOR
 This second computational tool uses a completely different
approach from traditional CFD codes. The architecture of the
software provides an integration of the solid modeling directly with
the mesh generation and with the flow solution (Fig.9). The solid
model is initialized by the import of a tessellated surface from a
variety of potential sources, such as STL format. The solid model is
then captured on the adaptive, unstructured Cartesian hexahedral
mesh very efficiently by cutting the tessellated boundaries using
basic computer graphics constructs developed for interactive 3D
gaming. The uniqueness of this software is in its capabilities of
providing the user a flexible graphical user interface for topological

-4-

editing, or flow sculpting, and rapidly updating the flow solution for
the morphed geometry.

Import solid
model via its
tessellated

surface
(STL or VRML)

Capture the
geometry on the

octree mesh

Solve for the
distance field

and extract the
body as the
zero level

Flow solution

Change the geometry by
editing the distance field -

SCULPT

Export solid model via its
tessellated surface (STL or VRML)

Fig.9 - Working principle of the integrated geometry engine, mesh
generator, flow solver and post-processor.

 The software has a built-in flow 3D RANS flow solver which
was adapted from an existing unstructured mesh RANS solver. For
additional information readers are encouraged to refer to the papers
by Dawes (2005), Dawes (2006) and Dawes et al (2007).

Test case: internal cooling system
 The employment of new concepts in the design of blades for
modern gas turbines has pushed the orthodox CFD process to its
limit. Interesting CFD calculations have been conducted by several
authors for complex geometries such as internal cooling systems
with arrays of pin fins, cooling holes, dust holes and ribs (Bucchieri
et al, 2006, Kulasekharan and Prasad, 2006). In most cases the
geometry is parameterized and the mesh is regenerated according to
the new configuration that the optimizer is analyzing. It is
convenient for some CFD analysts to instruct the mesh generator to
create an unstructured mesh, create the prismatic viscous layers and
finally generate an unstructured mesh using tetrahedral cells. There
are other engineers who prefer to work with templates for creating
multi-block structured meshes. In any case, the amount of time
required to set-up the scripts for driving the mesh generator can be
substantially large. In addition to that, the fact that a template must
be defined a priori constrains the design space for the optimizer.
The robustness of the system is also compromised since the mesh
generator will simply abort if, for instance, one pin fin overlaps a
neighbouring pin fin.

Fig.10 - Triangulated surfaces for a cascade with internal cavity.

 The present methodology, on the other hand, works in a
completely different way. The triangulated surfaces shown in
Fig.10 were generated from a generic cascade data. An internal
cavity was also added to the model in order to produce an
approximation to the internal cooling system of a real blade. The
coolant flow enters the cavity from the hub (blue arrow) and exits at
the trailing edge slot (green arrows). The triangulated surfaces are
therefore the starting point for the software. Once the input data is
read, a user-defined uniform Cartesian mesh is generated and the

cells which are intersected by the triangles are flagged as cut cells.
The mesh is then refined and the process is repeated until the
maximum number of refinements has been reached. Figures 11a
and 12a show the fluid mesh for pitchwise and spanwise planes,
respectively. The solid mesh is shown in Figs.11b and 12b. The fact
that the software generates both fluid and solid mesh at once makes
the approach very attractive for multi-disciplinary problems.
 The crucial part for the topology editing or sculpting capability
of the software lies on the Level Set Method (Osher and Sethian,
1988). Each cell has associated with it the signed distance to the
nearest point on the body (the triangulated surfaces in Fig.10),
known as a distance field. Boundaries are represented as the zero
isosurface of the Level Set (green color in Figs.11c and 12c). The
blue color in the figures represents the negative distance (solid
cells) whereas the red color represents the positive distance (fluid
cells). Sculpting means simply editing the distance field using a
simple voxel-wise logic.

a) Fluid Mesh b) Solid Mesh c) Distance Field

Fig.11 - Initial geometry (pitchwise plane).

a) Fluid Mesh b) Solid Mesh c) Distance Field

Fig.12 - Initial geometry (spanwise plane).

 Integration with a design optimization system. The
described software covers all steps in a CFD analysis, from
geometry import to results visualization. In order to take full
advantage of its powerful capabilities the software was integrated
with a widely used high level scripting interface, iSIGHT-FD 2.0.
One great advantage of this integration is that it provides the user
unlimited flexibility and robustness for modifying the geometry
according to the instructions from the optimizer. In practice, any
possible manufacturing operation can be performed on the model in
an analogous way to an actual NC machine. The other advantage is
that the optimization process script in iSIGHT-FD can be easily
added to a greater process within its framework. This would be very
convenient for large corporations that have chosen to use such
system for integrating the different disciplines involved in the
design process.
 A configuration file (Fig.13) is used as a means of defining the
parameters for the editing tools, such as tool type, editing mode
(remove or add material), tool radius, tool length and tool location.
This file is read by both software packages and it is the main source
of data exchange between them.
 The high level scripting interface for the design optimization
system is relatively easy to use. The methodology is similar to other

-5-

visual programming interfaces, such as Visual Basic, in which the
user starts with an empty canvas and gradually populates it by
dragging and dropping icons (or components). Figure 14 shows the
script for conducting an optimization task. The icon named DOE1
controls a design of experiments task. Double-clicking on the icon
will open a window in which the user can choose the type of
approach for DOE, the design variables, constraints and cost
function. For the present test case, a fixed number of 15 cylindrical
tools was chosen and the design variables were the spanwise
location of each tool and its radius. The idea was to create an array
of pin fins in the internal cavity by adding material to the mesh.
Each cylindrical tool works as a piece of metal to be deposited in
the cavity. The DOE algorithm generated hundreds of random
combinations of the 30 design variables. The Update ConfigTools
icon writes the new values of the design variables to the common
configuration file for the software (BoXeR icon) to read. The
software imports the triangulated surfaces, generates the mesh,
calculates the distance field for the original geometry, reads in the
editing tool data from the configuration file, calculates the distance
field for each of the editing tools, combines the distance field from
the original geometry and the editing tool, generates the edited
mesh and exports encapsulated postscript files of screen shots
captured during the process.

15 --> Number of tools
2 --> Tool 1: type = cylinder
-1 --> Tool 1: operation = add
-0.00169 --> Tool 1: x-coordinate
0.0175 --> Tool 1: y-coordinate
0.091666 --> Tool 1: z-coordinate
0.009666 --> Tool 1: radius
0.011154 --> Tool 1: length
0.0 --> Tool 1: angle 1
0.0 --> Tool 1: angle 2
0.0 --> Tool 1: angle 3
2 --> Tool 2: type = cylinder
-1 --> Tool 2: operation = add
-0.00169 --> Tool 2: x-coordinate
0.0175 --> Tool 2: y-coordinate
0.136666 --> Tool 2: z-coordinate
0.0060 --> Tool 2: radius
0.011154 --> Tool 2: length
0.0 --> Tool 2: angle 1
0.0 --> Tool 2: angle 2
0.0 --> Tool 2: angle 3
.
.
.

Fig.13 - Configuration file for defining the editing operations.

Fig.14 - The high level scripting interface (iSIGHT-FD).

 The CPU time required for the execution of the CFD code for
one configuration took in average 75s on a 64-bit workstation for a
mesh of approximately 2.1 million cells. It must be mentioned that
the process of rendering the plots and saving to file (purely for
demonstration purposes) took 20% of the total CPU time.
 Figure 15 presents some of the screen shots for the editing using
a cylindrical tool. The top left figure shows the original triangulated
surfaces in red and the cylindrical tools in blue. The top center
figure shows the distance field. The blue region inside the green
circles indicates the existence of solid cells. The top right figure
shows the fluid cells after the edit. The proposed approach proves
to be extremely flexible, allowing a full exploration of the design
space. In the bottom part of the figure the distance field contour plot
and the fluid and solid meshes are shown from a different
viewpoint.

Fig.15 - Topology editing using a cylindrical tool.

 Figure 16 shows similar test case results but using an arbitrary
tool (profiled fin). The STL model for the tool was generated using
two widely used software packages (Gambit and TGrid). The
editing tool was easily imported into the software by adding an
extra line to the configuration file pointing to the location and name
of the file containing the triangulated surfaces for the customized
tool. This is a very important feature in the software since the
editing may also be regarded as a means to construct a complex
geometry starting from a simple blade and adding all the other parts
using the editing tool. For instance, in the case of unshrouded
blades, the designer might be interested in investigating the effects
of the squealer shape or type on the heat transfer in the tip region. In
this case the input geometry for the software could be a triangulated
surface representing the blade without the squealer and the editing
tools could be the triangulated surfaces for different types of
squealers. The design variables could be the squealer type and
height.
 The flow solution for the castellated fluid meshes shown in
Figs.15 and 16 could be either run directly by the built-in standard
solver, or a ghost cell (Viecelli, 1971) based solver or exported as a
conformal mesh without the hanging nodes to a third party CFD
solver, such as Fluent. The aim of the current paper, however, is to
present the capabilities of the software to rapidly generate and edit
meshes from an STL file with minimum user interaction. The

-6-

linkage of the solver or third party solvers into the process is
currently ongoing and will be reported in future publications.

Fig.16 - Topology editing using an arbitrary tool.

CONCLUDING REMARKS
 The development of two innovative computational tools for
turbomachinery design was presented. Both software packages
were designed to bypass the CAD-mesh bottleneck and permit
meaningful automation. The successful integration of the second
computational tool with a widely used process integration and
design optimization system was demonstrated.
 The mesh morphing tool described in the first part of the paper
was designed for cases where systematic and moderate changes to a
large computational mesh are desired. It is best used in the
intermediate step of a design process assisted by CFD, where the
initial mesh and result data are available and the analyst is satisfied
with the quality of the solution. From that stage the designer would
probably be wishing to evaluate the effect of a particular
geometrical parameter on a certain figure-of-merit. In order to
avoid the trouble of manually modifying the geometry at CAD
level and going through the labour intensive task of regenerating
the mesh, the analyst may instead setup the mesh morphing tool to
make changes to the mesh automatically. The free-form
deformation (FFD) approach was used as a means to morph the
surface mesh. This technique allows the designer to survey a far
wider design space than a restricted set of design parameters. The
displacement of one control point of the FFD box allows the
variation of several engineering parameters at once. The free-form
deformation routines as well as the mesh quality optimizer are part
of a library of functions that were used by the second computational
tool.
 The second computational tool, on the other hand, provides
unlimited flexibility for editing the computational domain. The
methodology is ideal for rapid prototyping during the early phases
of the design process. It is designed for speed and for minimum user
interaction during the mesh generation. The built-in automatic
CAD clean-up tool eliminates the tedious task of fixing dirty
geometries. The CAD-mesh process is handled internally by the
software, restricting the user interaction to simply defining the
computational domain extension and number of mesh refinement

levels. The robustness of the software makes it a powerful tool for
conducting truly automated design optimization. The integration of
the software with a design optimization system was straightforward
and the ease of use of both software packages is certainly
encouraging for engineers willing to conduct complex real-world
design optimization. The integration of the solver or a third party
CFD solver into the design optimization framework is currently
underway and results will be published in the near future. Exploring
the natural conjugate format of the mesh generated by the software
for multi-disciplinary problems is another task that the authors are
planning for the near future. Some of the capabilities of the mesh
morphing tool, such as free-form deformation for editing the
triangulated surfaces and mesh quality optimization for the
conformal mesh export routine, were also incorporated into this
software.

ACKNOWLEDGEMENTS
 The authors would like to thank Engineous Software Inc. for
granting a free trial license for the development of the current
project.

REFERENCES
 Battina, J.T., 1990, “Unsteady Euler airfoil solutions using
unstructured dynamic meshes” , AIAA Journal, 28(8):1381-1288.
 Becz, S., Majewski, M.S., Langston, L.S., 2003, “Leading Edge
Modification Effects on Turbine Cascade Endwall Losses” , ASME
Paper 2003-38898.
 Bucchieri, G., Galbiati, M., Coutandin, D., Zecchi, S.,
“Optimisation Techniques Applied to the Design of Gas Turbine
Blades Cooling Systems”, ASME Paper GT-2006-90771.
 Dawes, W.N., Harvey, S.A., Fellows, S., Favaretto, C.F.,
Velivelli, A., 2007, “Viscous Layer Meshes from Level Sets on
Cartesian Meshes” , AIAA-2007-0555.
 Dawes, W.N., 2006, “Towards a fully parallel integrated
geometry kernel, mesh generator, flow solver & post-processor” ,
AIAA-2006-0942.
 Dawes, W.N., 2005, “Building Blocks Towards VR-Based Flow
Sculpting” , AIAA-2005-1156.
 Dompierre, J., Labbé, P., Vallet, M.G., Camarero, R., “How to
Subdivide Pyramids, Prisms and Hexahedra into Tetrahedra” , 8th
Internation Meshing Roundtable, California.
 Engineous Software Inc., “ iSIGHT-FD User’s Guide” , Version
2.0.
 Fluent Inc., “Fluent User’s Guide” , Version 6.2, 2005.
 Kellar, W.P., 2002, “Geometry Modelling in Computational
Fluid Dynamics and Design Optimization” , PhD Dissertation,
University of Cambridge.
 Kulasekharan, N., Prasad, B.V.S.S.S., 2006, “ Influence of Rib
Turbulators on Pin-Fin Heat Transfer in the Trailing Region of Gas
Turbine Vane - A Numerical Study” , ASME-GT-2006-91124.
 Lethander, A.T., Thole, K.A., Zess, G., Wagner, J., 2003,
“Optimizing the Vane-Endwall Junction to Reduce Adiabatic
Temperatures in a Turbine Vane Passage”, ASME Paper
GT-2003-38939.
 Osher, S., Sethian, J.A., 1988, “Fronts propagating with
curvature-dependent speed: algorithms based on Hamilton-Jacobi
formulations” , Journal of Computational Physics, 79, 12-.
 Samareh, J.A., 2004, “Aerodynamic Shape Optimization Based
on Free-form Deformation” , AIAA-2004-4630.
 Viecelli, J.A, 1971, “A computational method for
incompressible flows bounded by moving walls” , Journal of
Computational Physics, 8, 119-.

