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The following paper examines the key aspects of technology that deliver an advanced 
hybrid meshing capability that is operational today, and is ideally suited to complex, real-
world geometries. The paper shows how particular benefits are derived from detailed 
algorithmic features at octree level, from the overall meshing procedure and from the 
software’s client-server architecture and its distributed-memory parallel implementation. 
Two two complex geometry examples are used to demonstrate the benefits in terms of 
complex geometry capability, of ability to modify geometry and of and ease-of-use. 

Nomenclature 
ϕ = distance field derived around the surfaces defining the geometry 

I. Introduction 
The computational resources available today make it possible to obtain CAE simulations on models that are ever 

more realistic and complex. Such simulations are also very much in demand, in line with the fact that the next 
generation of technological improvements are generally to be found at ever smaller levels of detail and higher levels 
of realism. In addition, optimization is moving on from component to system, or at least sub-assembly, level. These 
trends further exacerbate the bottleneck that is obtaining a suitable discretization (mesh) to run simulations on 
appropriate fidelity level, real-world, complex geometries.  

The focus of the following paper is to demonstrate in clear terms how an easy-to-use hybrid unstructured mesher 
delivers a reliable, practical CAE gridding capability that transforms industrial simulation cycles, irrespective of 
geometry complexity and size. In practical terms, the key attributes that make the technology relevant to industrial 
applications revolve around ease-of-use, reliability and speed. Obtaining a mesh on a challenging geometry should 
be a systematic process that is not specialized or manpower intensive and can be carried out at least as rapidly as any 
of the other simulation stages. Reliability and speed of the meshing process ensure that a mesh is generated on a 
predictable and short timescale. In a design context, this allows the user the opportunity to amend the design, and 
more broadly allows the simulation process to participate fully in the engineering design cycle. 

The paper is structured in two parts. The first part explores the aspects of this specific meshing technology that 
deliver the tangible benefits and the key attributes mentioned above. Specifically, the paper highlights the aspects of 
the meshing strategy that confer reliability, robustness, speed and the ability to deform geometry through scripting 
within the meshing environment. 

The second part of the paper focuses on illustrating the key steps in the meshing process through two specific 
example applications, highlighting clearly how these benefit from the meshing technology. A complete turbocharger 
is used to highlight the ability of the software to import high-complexity models, and to show the ease with which 
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Figure 1b: embedding in background mesh 

the meshing process is set-up and executed. The second example involves the meshing of an entire warship, with a 
helicopter landing on deck. This application illustrates the ability of the software to deal with a very wide range of 
lengthscales, and the ease with which geometry deformation can be scripted and implemented largely automatically, 
enabling the user to explore design spaces through parametric variations. 

 

II. Meshing Technology 
 
BOXERMesh is an unstructured hybrid mesh generator 

that discretizes geometry directly from CAD, using an 
Octree-based approach coupled to a distance field. The 
theoretical background of the technology has been reported 
previously (Dawes et al.1,2,3), and was inspired by early work 
by Adalsteinsson & Sethian4, and Baerentzen5 

The meshing process can be viewed as a “volume-to-
surface” approach that avoids the prior generation of a 
surface mesh by “capturing” and “re-constructing” the 
geometry as the volume mesh is generated. In effect, the 
current approach focuses on the efficient generation of a 
runnable mesh, that most closely represents the body. 

on volume 
sculpting with Level Sets. 

The underlying “philosophy” of BOXERMesh is 
generate a mesh that is always runnable, through a process 
that is entirely dependable and will take a predictable amount  
of time, rather than being open-ended or able to fail. 

The meshing process can be broken down into three key 
stages: generating an octree mesh based on a distance field, 
body-morphing the octree mesh to capture the geometry, and 
growing viscous layers of selected surfaces. 

 

A. Octree Meshing 
The user first set-ups a bounding box that will contain the 

mesh, and defined a “seed” location within that box 
specifying which region of space on either side of geometry 
will hold the final mesh. The octree mesh stage begins once 
that is done. 

Next, a distance field ϕ is derived. This defines a 
“standoff distance” from the body, but also the surface 
normal (n=grad(ϕ ) and curvature (k=div(n)) (see Fig.1a). 

The geometry is then immersed in the background octree 
grid constructed on the bounding box (and including all cell 
refinement specifications), and cells are sorted depending on 
whether they are in a seeded region or outside, or are cut by 
the geometry (see Fig.1b). At this stage the subdivision of 
the background cells already takes into account any 
refinement specified by the user. 

The cut cells and those outside are discarded, producing 
an integer, conformal approximation to the true body 
surface, initialized from the set of exposed quad faces, 
shown in red in Figure 1c. The remaining set of cells forms 
the octree mesh (Fig. 1c). In a sense the octree mesh 
represents the nearest integer approximation of the geometry 
that is possible with the background grid size and 
refinements specified. These exposed quad faces represent 

 
 
 
 
 
 
 
 
 
 
 

Figure 1a: distance field ϕ 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1c: Octree mesh and body normals 
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the “integer front”. 
In practice, generating an octree mesh is a very fast process, typically lasting a few seconds. This rapidly gives 

the user a good initial idea of the degree to which the geometry and relevant features will be resolved in the final 
mesh. 

 

B. Body morphing 
The body morphing stage involves node displacements 

and insertion of hybrid cells (tetrahedral, prisms and 
pyramids) in a process called hybridisation. Existing nodes 
from the integer front are displaced onto the geometry 
following the body normals (shown in Fig. 1c). Those 
displacements that would lead to compromised cell quality 
metrics are not allowed to proceed, and new, hybrid 
elements are inserted between the front and the geometry 
(see Fig.2a). The emphasis is on producing cells of 
guaranteed quality, and the.process follows the underlying 
principle that displacements and insertions are done subject 
to the mesh always being solvable. In other words, the 
resulting mesh is conformal with the body – unless if to be 
so would produce an unsolvable mesh. 

This might seem radical but in fact is simply a 
pragmatic acceptance that if a given mesh cannot support 
an acceptable flow solution then that mesh is worthless. 
This clearly places heavy emphasis on the mesh having 
adequate resolution to support local length scale features – 
if the mesh is too coarse then the present solvability 
principle will force the sub-mesh scale feature to be 
suppressed – this automatic de-featuring is better than a 
failed mesh or flow solve. This is a critical enabling step 
for any sort of simulation system which aims at 
performing design optimization on complex, engineering 
geometries. 

An optimizer is used to finalise the node displacement 
and insertion of hybrid cells, until all nodes on the front 
are on the geometry surface (Fig.2b). 

 

C. Viscous layer extrusion 
The layer extrusion process involves pushing back the 

body-morphed mesh by inserting prism elements templated 
on the surface nodes. The layers are built up one above the 
other, and the extrusion of each layer is only allowed to 
proceed as long as the cell quality metrics are met. Any 
local extrusion that compromises cell quality is halted, 
while adjacent extrusions that still meet the quality metric 
are allowed to proceed further. 

The layers are specified simply through a first layer 
height, the number of layers requested and the expansion 
ratio from one layer to the other. 

A final smoothing pass is applied to the “inviscid” part 
of the mesh once all layers are extruded. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2a: Hybridisation 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2b: Body-morphed mesh 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3a: Viscous layer extrusion 
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III. Benefits of the present approach 
A number of significant benefits arise from the present approach. Some of these benefits stem from the overall 

meshing procedure, some from detailed choices at an algorithmic level and others simply from the way in which the 
software has been written and implemented. 

A. CAD Tolerance and Geometry Deformation 
The fact that the geometry is “captured” and “re-constructed” 

as the volume mesh is generated has a number of advantages. 
Specifically, these derive from the software’s ability to “re-
construct” edges and surface intersections, to the extent that it 
does not need to have these specified in the original CAD 
definition of the geometry. As a result, the software is very 
tolerant of “imperfect” CAD. Surface intersections which are not 
perfectly coincident (see Fig. 4) will be treated as properly joined 
as long as defects (e.g gaps) are smaller than the local octree cell 
size. In other words, the tolerance to CAD imperfections is 
essentially automatic.  

A second benefit of the treatment of surface intersections is 
that geometry can be deformed at input into the software, without 
having to revert to CAD. Again, this is because accurate 
geometric definitions of edges and surface intersections are not required, so that elements of the geometry (or entire 
objects) can be displaced one relative to the other and immediately remeshed in that new configuration. This 
actually delivers a very powerful geometry deformation capability within the meshing environment, that can be very 
easily scripted to explore parametric design spaces or perform design optimization when combined with a CFD 
sover, for example. This capability has been reported in Evans et al6 and Dawes et al7

 

. An example of geometry 
deformation capability is examined below (see section IV-B). 

B. Thin Surfaces and Viscous Layers 
A key difference between the present approach and other cut-cell octree methods lies in the decision to use an 

octree integer front that is positioned at some distance from the geometry rather than intersecting it. One of the 
advantages this brings is in the treatment of thin or zero-thickness surfaces, such as baffles (Fig. 5a). In those cases, 

the displacement of integer front nodes along distance field body normals guarantees that nodes will automatically 
find the correct surface to morph onto (Fig. 5b). This avoids the topological issues caused by nodes morphing to the 
wrong side of the thin or zero-thickness surface, and the manual work required to either pre-empt or fix those issues 
to achieve a usable mesh. The present approach guarantees that the treatment of such thin surfaces is essentially 
automatic, and most importantly that it leads to topologically valid, good quality cells. In turn, this contributes to the 
robustness, consistency and dependability of the software, which can be used perfectly reliably to generate meshes 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Typical CAD defect treated 
automatically by BOXERMesh 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5a: Thin surface – cut cells 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5b: Integer front nodes automatically morph 

to the correct side of the surface 
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Figure 7: Complete turbocharger – 
section through CAD model 

in automatic (batch) mode, facilitating its integration into existing workflows and simulation processes, and 
permitting it’s use in design optimization. 

Another advantage of the integer front standoff distance 
is that the task of extruding viscous layers is made easier by 
the buffer space provided around the geometry. It becomes 
possible to grow layers further away from the surface, both 
because the underlying topology is more favourable and 
because the extrusion itself is less constrained. Furthermore, 
as the quality of the cells resulting from each step in the 
inflation process is checked prior to the extrusion itsef, 
layers can be grown into narrow gaps and surfaces in close 
proximity without cells colliding and being pushed into one 
another. This also leads to a layer growth that tapers down 
automatically to accommodate the reduced space available.  

Viscous layers around a landing gear strut taken from the 
NASA / Gulfstream “Partially Dressed Closed Cavity – 
Nose Landing Gear” geometry submitted as one of the 
reference problems to the AIAA BANC-II workshop8

 

 (test 
case 4), is shown in Figure 6. The layers can be seen to 
extend significantly into the freestream, wrapping around 
features and tapering down into spaces with tight clearances. 

C. Computational Flexibility and Speed from Parallelization 
The software is structured following a simple client-server architecture: the server performs the core meshing 

task, driven by the client (GUI), or from the command line or as batch job. Significantly, from the onset, the 
software was written as distributed memory parallel code, which presents significant scalability advantages, 
particularly for large, high cell count meshes that have higher memory requirements. In those cases, the ability to 
distribute the memory requirement over the computational nodes, each node only needing its own small subset of 
the total memory, as opposed to having to pool the memory centrally for all the nodes to access, is a major benefit. 

All stages of the meshing process described in section A are parallel, including the extrusion of viscous layers. 
This confers significant speed to the software. The following sections provide examples of complex geometry, 
multi-million cell meshes generated on the timescales of an hour or so. 

Together, the architecture and parallelization allow the software to run on the widest range of hardware 
platforms, literally from a laptop to an HPC cluster to the cloud, whilst delivering excellent performance scalability. 
Users have demonstrated performance retention in meshes exceeding 1Bn cells. 

 

IV. Example Applications 
The second part of this paper focuses on illustrating some of the 

characteristics and benefits of the current approach through two specific 
example applications. The first example is a complete turbocharger 
assembly that presents complex geometrical domains and features. The 
second example involves the meshing of an entire warship, with a 
helicopter landing on the rear deck in the ship’s air wake. 

 

A. Complete Turbocharger 
The geometry in this example is a complete turbocharger, used by 

courtesy of The Holset Engineering Co. This particular design is typically 
used in mid-range diesel engine applications, from 90kW to 240kW, and 
is found in light trucks, minivans and larger pick-up trucks. The 
turbocharger is a variable geometry design, using a sliding side wall to 
regulate the area at turbine entry. The system is oil-lubricated and water 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Viscous layers around a landing gear strut 

– automatically tapering into narrow gaps (detail) 
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cooled. Typical operating speeds are in the region of 150,000rpm, and maximum boost is around 4atm. 
The CAD defining the geometry is of “manufacturing” grade, in other words it includes all the components and 

dimensioning required for assembly. In a CFD analysis context this generally means that there is excessive 
information and that the user will have to spend time defeaturing the CAD to retain only the information and detail 
that is needed for the CFD analysis. In the present approach, the tolerance to CAD and ability to handle arbitrary 
complexity mean that the CAD cleanup and defeaturing stage is not required, and the CAD is imported directly into 
BOXERMesh. 

The turbocharger consists of separate compressor (atmospheric air) and turbine (exhaust gas) domains, as well as  
lubricating oil andcooling water cavities. The geometry is inserted into a background octree mesh via a bounding 
box and each of these 4 domains is seeded and meshed separately. The mesh set-up stage took of order 20 minutes. 
The compressor domain ran on 48 processors and took approximately 15 minutes to mesh (in blue in Fig.8a). The 
larger turbine domain, which includes vanes, took approximately 40 minutes to mesh (in red in Fig. 8a). 

 
The ability to extract automatically complex domains is illustrated in Fig. 8b, showing a section through the 

meshed oil lubrication cavity. The resulting meshes are immediately runnable (Fig. 8c) and do not need repair. They 
can be solved separately or in a conjugate mode. Geometry not needed to define the selected domain is simply and 
automatically discarded without user input. 

More generally, the point made here is that the present approach is ideally suited to the meshing of highly 
complex geometries, and is sufficiently easy-to-use for the meshing to be done with minimal user intervention. 
Furthermore, the ability to import and use highly-detailed CAD directly, as well as the fact that the user avoids the 
mesh repair stage altogether, combine to deliver a considerable gain in time and productivity. 

 

B. Warship with Helicopter Landing on Rear Deck 
The original geometry for this example was obtained from 

Trimble 3D Warehouse9

Geometry is imported into BOXERMesh retaining the full 
feature tree. This enables important downstream productivity 
benefits by allowing full boundary condition associativity. 
Another advantage, exploited here, is that individual elements 
of geometry can be identified and a variety of spatial 
transformations applied to these elements, rapidly generating a 
new configuration. Commonly used transformation include 
translations, rotations, and scalings, applied to all or part of a 
geometry. The transformations are applied through simple 

, and is publicly available for use. The 
geometry is based on an Arleigh Burke-class destroyer, and 
includes both the ship and the helicopter on the deck. Both are 
very well detailed, retaining features such as individual 
railings, antennae, and individual windshield wipers on the 
helicopter (Fig. 9). 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 8a: Compressore (blue) and 

turbine (red) domains 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 8b: Mesh on a section through 

the oil cavity domain 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8c: Flow solution on the 
compressor and turbine domains - 
streamlines coloured by Mach no. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: CAD geometry of the ship and 
helicopter 
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scripting, making use of a utility that reads in, executes and outputs BOXERMesh files. As mentioned in section III-
A, deformation of geometries within the meshing environment is made possible by the way in which the present 
approach treats surface intersections. 

In this example the helicopter is brought to land on the deck of the ship, by modifying its position sequentially 
through four different stages involving translations 
and rotations. In the last stage, the oleo on the tail 
landing gear is also compressed, to illustrate the 
ease with which specific parts of a geometry can be 
deformed. 

The meshing process for this example is 
illustrated as a flow diagram in Fig. 10. The 
process is driven through a Python script. The 
script reads in the original CAD parts and then 
defines the desired displacements. The script then 
loops over the sequence of positions, and for each 
one displaces the helicopter and then imports the 
resulting transformed geometry and the unchanged 
ship geometry into the mesher, where these are 
combined to form the model. BOXERMesh’s 
internal solid geometry model allows the new 
simulation model to be assembled via simple 
Boolean summation with geometry intersections, 
collisions and gap closures handled automatically. 

The Python script invokes a pre-defined template file that is used to set-up the meshing parameters, and guide 
the actual meshing run. The resulting mesh is saved and the script iterates to the next position until the desired 
sequence is completed. The output from the script  is a series of runnable meshes, together with a log of operations, 
including statistics and timings.  

The key point here is that all these modifications to the geometry are carried out within what can be described as 
the meshing environment, without reverting to CAD in any way. This is of very practical benefit to the user, as it 
delivers the capability to explore design variants and spaces in an automated way, and lends itself naturally to 
integration into broader design optimization processes. 

Setting the process up including initial import of CAD, 
initial BOXERMesh run to generate the meshing set-up 
template, and preparing the Python script took about 1 day. 
This again highlights the ease with which such an intricate 
geometry can be set-up and meshed. 

The cell count for these meshes remained effectively 
constant at 46 Million cells, with 28.5 Million nodes. Typical 
meshing times were about 100 seconds for the octree mesh 
and 72 minutes for the body-fitted mesh, running on 48 
processors. This is actually noticeably slower than the 
average speeds achieved on most geometries, which is 
typically close to 0.02 Mcells/min/core. The reason for this 
slight increase in meshing time is that this case has a 
particurlarly large number of very small features which are 
detected by the software, and then resolved automatically 
through additional “feature capture” iterations, which take 
longer. In this example, small features include all railings and 
antennae on the ship, of which there are many (see Fig.11). 
This point provides a clear illustration of how actual software 
performance (speed) on complex geometries can be case 
specific, influenced by detailed features and range of 
lengthscales, as well as evidently by user inputs such as 
refinements and the number of layers. It also highlights the 
software’s inherent ability to deal with a very wide range of 
lengthscales – close to 105 in this example. Other meshes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Process flow diagram - ranging over sequence 

of helicopter positions relative to the ship 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Detail of the mesh around the ship 

mast and antennae 
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Figure 12: Scripted displacement sequence – landing the helicopter on the ship’s deck 

have been generated on models with ranges in excess of 108. The software is capable of working with lengthscale 
ranges of 1011

 
 . Pictures of the resulting meshes for each of the four helicopter position are shown in Fig. 12.  

As mentioned, the resulting meshes are ready to be used, and no “repair” activity is required by the user. Side 
views of the mesh and of a CFD solution on the first helicopter position are shown in Fig. 13, with the ship sailing 
into the wind at 14 knots. The boundary conditions used are approximate, and verify that the meshes are indeed 
runnable, rather than being physically representative and accurate. The CFD was run using Fluent 14.5.0 and 
showed good convergence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Side view of the mesh and a flow solution 
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V. Conclusion 
The objective of this paper is to highlight key aspects of technology that deliver an advanced hybrid meshing  

capability that is ideally suited to complex, real-world geometries. The paper shows how particular benefits are 
derived from detailed algorithmic features, from the overall meshing procedure and from the way the software is 
written and implemented. These benefits are demonstrated on two complex geometry examples. 

The specific treatment of surfaces and geometry delivers both a tolerance to CAD imperfections and the ability 
to deform geometry within the meshing environment. The use of a distance field coupled to an integer octree front 
that stands-off from the geometry allows the software to deal automatically with thin or zero-thickness surfaces. 
Importantly, this ensures that the meshing process has control of cell quality, producing meshes that are 
immeadiately usable, and underpining the robustness and reliability of the entire meshing process. It also contributes 
to delivering a very comprehensive and powerful viscous layers extrusion capability. 

The present approach is implemented as distributed-memory parallel software, which gives it excellent 
scalability and therefore the ability to tackle very large meshes. It also gives it speed, with meshes generated in a 
matter of hours and minutes. An added advantage is the use of a client-server architecture, which allows the 
software to run equally well on hardware platforms ranging from laptops to HPC clusters to the cloud. 

More generally, the paper demonstrates that through these key features and techniques, the present approach 
delivers a robust, reliable and easy-to-use meshing capability that tackles geometries of arbitrary complexity and 
size, in a truly parallelized and scalable way. This high-performance simulation capability is in operation now. 

 

References 
1

 

Dawes WN “Building Blocks Towards VR-Based Flow Sculpting” 43rd AIAA Aerospace Sciences Meeting & Exhibit, 10-
13 January 2005, Reno, NV, AIAA-2005-1156 

2Dawes WN, Kellar WP, Harvey SA “Viscous Layer Meshes from Level Sets on Cartesian Meshes” 45th

 

 AIAA Aerospace 
Sciences Meeting & Exhibit, 8-11 January 2007, Reno, NV,  AIAA-2007-0555 

3Dawes WN, Kellar WP, Harvey SA ”A practical demonstration of scalable parallel mesh generation” 47th

 

 AIAA Aerospace 
Sciences Meeting & Exhibit, 9-12 January 2009, Orlando, FL, AIAA-2009-0981 

4

 

Adalsteinsson D & Sethian JA, “A level set approach to a unified model for etching, deposition & lithography II: three 
dimensional simulations” J.Comput.Phys, 122, pp348-366, 1995 

5

 
Baerentzen A, “Volume sculpting: intuitive, interactive 3D shape modelling” IMM, May 2001 

6

 

Evans RO, Dawes WN, Zhang Q “Application of Design of Experiment to a Gas Turbine Cascade Test Cell” ASME Turbo 
Expo 2013: Power for Land, Sea and Air, June 3-7, 2013, San Antonio, TX, ASME GT2013-94314 

7Dawes WN, Kellar WP, Harvey SA “Towards topology-free optimisation: an application to turbine internal cooling 
geometries” 46th

 
 AIAA Aerospace Sciences Meeting & Exhibit, 7-10 January 2008, Reno, NV, AIAA-2008-925 

8

 

Second Workshop on Benchmark problems for Airframe Noise Computations (BANC – II), AIAA, Aeroacoustics and Fluid 
Dynamics Technical Committees, June 7-8, 2012, Colorado Springs, CO 

9Trimble 3D Warehouse; http//:http://sketchup.google.com/3dwarehouse/ 

http://sketchup.google.com/3dwarehouse/�

	Nomenclature
	I. Introduction
	II. Meshing Technology
	A. Octree Meshing
	B. Body morphing
	Viscous layer extrusion

	III. Benefits of the present approach
	A. CAD Tolerance and Geometry Deformation
	B. Thin Surfaces and Viscous Layers
	C. Computational Flexibility and Speed from Parallelization

	IV. Example Applications
	A. Complete Turbocharger
	Warship with Helicopter Landing on Rear Deck

	V. Conclusion
	References

